Status of the ASTEX LES intercomparison study

UDelft Delft University of Technology

Johan van der Dussen Stephan de Roode Pier Siebesma Andy Ackerman Peter Blossey Adrian Lock Irina Sandu

> April 5, 2012 Toulouse

ASTEX model intercomparison

UDelft Delft University of Technology

Transition analysis

Detailed analyses of the LES and SCM results for ASTEX						
and the two GPCI columns						

The EUCLIPSE LES model intercomparison of the Stratocumulus to Cumulus transition as observed during ASTEX Quart. J. Roy. Meteor. Soc., to be submitted

Analysis of transition results

(Wood and Bretherton, 2004)

(Randall, 1984)

Analysis of transition results

(Randall, 1984)

(Wood and Bretherton, 2004)

$$\Gamma_{q_L} \frac{\partial h_c}{\partial t} = \left(\frac{\partial q_L}{\partial q_T}\right)_{\theta_L, z_i} \frac{\partial q_T}{\partial t} + \left(\frac{\partial q_L}{\partial \theta_L}\right)_{q_T, z_i} \frac{\partial \theta_L}{\partial t} + \left(\frac{\partial q_L}{\partial z_i}\right)_{\theta_L, q_T} \frac{\partial z_i}{\partial t}$$

- Budget equations for q_T and θ_L tendencies

$$\frac{\partial \varphi}{\partial t} = -\frac{\partial \overline{w' \varphi'}}{\partial z} + \frac{\partial S_{\varphi}}{\partial z}$$

- Inversion height evolution is sum of entrainment and subsidence

$$\frac{\partial z_i}{\partial t} = w_e + \overline{w}(z_i)$$

$$\Gamma_{q_L} \frac{\partial h_c}{\partial t} = \left(\frac{\partial q_L}{\partial q_T} \right)_{\theta_L, z_i} \frac{\partial q_T}{\partial t} + \left(\frac{\partial q_L}{\partial \theta_L} \right)_{q_T, z_i} \frac{\partial \theta_L}{\partial t} + \left(\frac{\partial q_L}{\partial z_i} \right)_{\theta_L, q_T} \frac{\partial z_i}{\partial t}$$

- Budget equations for q_T and θ_L tendencies

$$\frac{\partial \varphi}{\partial t} = -\frac{\partial \overline{w' \varphi'}}{\partial z} + \frac{\partial S_{\varphi}}{\partial z}$$

- Inversion height evolution is sum of entrainment and subsidence

$$\frac{\partial z_i}{\partial t} = w_e + \overline{w}(z_i)$$

$$\Gamma_{q_L} \frac{\partial h_c}{\partial t} = \left(\frac{\partial q_L}{\partial q_T}\right)_{\theta_L, z_i} \frac{\partial q_T}{\partial t} + \left(\frac{\partial q_L}{\partial \theta_L}\right)_{q_T, z_i} \frac{\partial \theta_L}{\partial t} + \left(\frac{\partial q_L}{\partial z_i}\right)_{\theta_L, q_T} \frac{\partial z_i}{\partial t}$$

- Budget equations for q_T and θ_L tendencies

$$\frac{\partial \varphi}{\partial t} = -\frac{\partial \overline{w' \varphi'}}{\partial z} + \frac{\partial S_{\varphi}}{\partial z}$$

- Inversion height evolution is sum of entrainment and subsidence

$$\frac{\partial z_i}{\partial t} = w_e + \overline{w}(z_i)$$

Thermodynamics

Result: analysis of cloud thickness tendency during ASTEX

Sensitivity experiments: divergence

Sensitivity experiments: divergence

Transitions were previously shown to be slowed down by lower divergence (De Roode and Van der Dussen, 2010; Sandu and Stevens, 2011)

Three extra simulations were performed to investigate this effect

Delayed cloud break up by lowering divergence

UDelft Delft University of Technology

$$\frac{\partial z_i}{\partial t} = w_e + \overline{w}$$

Inversion height increases due to:

- less negative \overline{W} (~ 2/3)
- increased w_e (~ 1/3)

Tendency due to divergence hardly changes

Tendency due to entrainment becomes less negative

Tendency due to entrainment becomes less negative

<u>Contribution</u> due to entrainment decreases, even though the entrainment <u>rate</u> increases

Sensitivity experiments: Cloud droplet number density

Relatively large precipitation differences

Precipitation rate differences related to LWP

UDelft Delft University of Technology

Sensitivity experiments: precipitation

Deft Delft University of Technology Additional simulations using DALES confirm relation

- $N_c = 60$, 100 and 200 cm⁻³
- Khairoutdinov and Kogan (2000) Seifert and Beheng (2001)

Entrainment rate sensitive to change in cloud droplet number

Opposite relation has been reported for the composite cases

Entrainment contribution:

$$\frac{\partial h_{\rm c}}{\partial t} \longrightarrow \frac{\eta w_e}{\Gamma_{q_L} h_{\rm c}} \left(\Delta_{\rm i} q_T - \Pi \gamma \Delta_{\rm i} \theta_L \right) + w_e$$

For ASTEX, jumps are small and contribution hardly changes

In the composite cases, q_T jump is factor of 4 larger

Parametrisation statistics

Identification and comparison of the key quantities used in ESM parametrisation schemes with LES results and	D3.4
observations	

Next step: parametrisation statistics

Example: conditionally sampled *w*-budget

Next step: parametrisation statistics

FUCLIPS

Typically parametrised as:

$$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = aB_s - b\epsilon_q w_s^2$$

Unexpected results for cloud updraft sampling

Test sampling criteria using 3D LES data

Storage of instantaneous 3D LES fields and key statistical	D3.2
variables in a public archive	

(courtesy of Arjan van Leeuwen)

Publicly accessible 3D LES fields to test sampling criteria

Home	Projectinfo	WP1	WP2	WP3	WP4	Deliverables			
Intercompar	ison cases	Instantaneou	s 3D LES fields	for the ASTEX	case as obtair	ned with DALES			
ASTEX Lagrangian		Below is a list of file	e names astex_3I	D_hhmmss.nc, wi	th hh indicating t	he hour, mm the minute, and ss the seconds.			
Composite Cas	es	astex_3	D_020000.nc						
CGILS		 astex_3 	D_020500.nc						
Radiation interc	romparison	astex_3	D 021500.nc						
study	ompanoon	 astex 3 	D 022000.nc						
siuuy		 astex 3 	D 022500.nc						
Mantines		 astex_3 	 D_023000.nc						
Meetings		 astex_3 	D_023500.nc	http	http://www.euclipse.nl/wp3/LES_Data/ASTEX/D				
EUCLIPSE WP3	3 meeting	 astex_3 	D_024000.nc						
Toulouse, 5-6 A	pril 2012	 astex_3 	D_024500.nc	30	fiolds of	$f u v w \theta_{I} a_{T} a N$ and a			
EUCLIPSE-GCSS/BLCWG		 astex_3 	D_025000.nc	50	SD fields of $a, v, w, o_L, q_T, q_L, n_r$ and q_r				
meeting De Bilt, 27-30		 astex_3 	D_025500.nc	5 m	5 minute interval during selected hours of transit				
September 2010		 astex_3 	D_030000.nc						
		 astex_3 astex_3 	D_070500.nc						
Links		 astex_3 astex_3 	D_070500.nc						
		 astex_3 	D 071500.nc						
Cloud Feedbac	k MIP	 astex 3 	D 072000.nc						
		• astex 3							

Technology

Status of the ASTEX LES intercomparison study

UDelft Delft University of Technology

Johan van der Dussen Stephan de Roode Pier Siebesma Andy Ackerman Peter Blossey Adrian Lock Irina Sandu

> April 5, 2012 Toulouse

Tendency of cloud layer thickness (2)

Decoupling can decrease for increased precipitation

Tendency due to shortwave and longwave radiation

Sensitivity experiments: precipitation

Generally good agreement between models, but not for all variables:

