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» CO> increase : Equilibrium Climate Sensitivity of +4.4K (High
sensitivity model)

» Tropical Cloud Radiative Forcing : ACRF SW gives the sign of
ACRF Net (less negative, less cooling)

» Positive feedback associated to the tropical low cloud decrease

» Difficulty to understand the mechanisms involved in a coupled
model — Using a model hierarchy of different configurations.
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» Model Hierarchy with IPSLCM5A atmospheric physics

> Same response between coupled models and atmospheric
models (idealized atmospheric circulations using wsgg)

» Tropical ACRF controlled by ASWCRF in weak subsidence
regimes (ws00=0-30hPa/day)

» What controls the SW CRF increase on this regime ?
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Zoom on weak subsidence regimes
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» Cloud profile on a weak subsidence area (wsg0=20 hPa/day)
» Decrease of cloud fraction in the 950mb layer

» Responsible for the positive cloud feedback of IPSLCM5a
model (amplified by the large statistical weight of this regime)

» May we reproduce the 3D behaviour using a SCM ?
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SCM able to reproduce cloud profile both in present and future
climate by adding a stochastic variability on large-scale vertical

velocity

Stochastic forcing allows a alternance of strong convective and
subsidence states (characteristics of weak subsidence case)

How had the stochastic forcing been created ?
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Pressure (Pa)

Framework of Stochastic Forcing
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» Using 4xdaily outputs of a Aquaplanet model over
w=20 hPa/day to extract variance profile (dashed line) :
Max at 300 hPa

» In agreement with NCEP2 re-analysis

6/25



Framework of Stochastic Forcing

Creation of stochastic forcing
with imposed aquaplanet
variance

AWl
i

Vertical Velocy (Palday)

» (1) Full random stochastic
forcing — Wrong range of
vertical velocity values

> (2) 6-hourly averaged
values — Good range, I ]
25 hPa/day as averaged w =00 & e me e e mee

Vertcal Velocty (1Palday)
[
8
]
Il
I
]

> (3) Smoothing by linear
interpolation — 200 |
Reality-like evolution
(memory of the previous i ]
step) 200 L ]

Vet Velocty (Palday)

7/25



W (hPa/day)

CGILS Transient Forcing

Transient Forcing created by Chris Bretherton and Minghua Zhang

for CGILS protocol
Based on 3-hourly variability of the ECMWF analysis

Vertical Veloctiy evolution
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For w=750 hPa Stochastic vs Transient

» Less high variation, lower variance

» Smoother

Pressure (Pa)

200

400

600

800

1000

0

2

40 60
Vertical Velocity (hPalday)

80

100

8/25



Understand cloud feedback through a MSE budget

Description of conservative MSE budget (W/m?) :

MSE=C,T+gz+Lg=s5+Lqg (1)
OMSE _ 0s oLq
87P>7<8—P>+<87P>70 2)

<> represent integration over the entire atmosphere
— Dry static energy budget (s) :

— = 0s
—(V.V$)hor— < wap > +SH+L«P+ACRF+ <Ry >=0 (3)

— Water budget :

0
—L*(V.?q)ho,—LMwa%>+LH—L*P=o (4)
— Moist Static Energy budget (equations 3 + 4) :
OMSE
— (V.Y MSE)por— < wo— > +SH + LH + ACRF+ < Ry >=0 (5)

oP
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Understand cloud feedback through a MSE budget
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ACRF decomposition for stochastic s6 CGILS SCM :

ACRF = —(V .V MSE ) o — < w
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Understand cloud feedback through a MSE budget

AACREF for stoch s6 CGILS SCM over a range of sensitivity tests
(Brient and Bony, 12) :
OMSE

AACRF = —A(V .V MSE) oy — O < w 5

> +A(SH+ LH)+A < Ry >
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Understand cloud feedback through a MSE budget

20

15 - D |

10 o

Low Cloud Fraction change (%)

-10 +

-15

10 5 10
BVA change (W/m2)
AACREF for stoch s6 CGILS SCM over a range of sensitivity tests
(Brient and Bony, 12) + 3D colored points :
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Positive Low Cloud feedback
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Energetic analysis of the PBL MSE budget on current climate (W/m?)
> Increased by surface turbulent fluxes (LH + SH)

» Decreased by clear-sky radiative cooling (|Ry]), Cloud radiative

cooling ([ACRF]) and vertical advection of MSE ([—w2%])
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Positive Low Cloud feedback
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Change of energetic analysis for a Future Climate (W/m?)

» Enhanced import of low-MSE into the PBL — Reduced clouds
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Positive Low Cloud feedback
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Change of energetic analysis for a Future Climate (W/m?)

» Enhanced import of low-MSE into the PBL — Reduced clouds

» At first order, due to Clausius-Clapeyron relationship : Aq(z) larger
at higher temperature (surface) than at altitude
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Decomposition of MSE vertical profile

» MSE deficit vertical
profile decomposed

into C,*T+gz and L*q

parts

» Dashed lines for +2K
and Dotted lines for
4xCO2 experiments

» A MSE due to "Lg"
for +2K (ACF<0)

» A MSE due to

"Cp*T+gz" for 4xCO2
(ACF>0)

Pressure (Pa)

200001

300001

400001

50000 4

600001

70000 4

80000

900001

100000+

SCM s6 CGILS

MSE (103 J/kg)

L -
5 o |
\: SR :
I v/
1 R /!
R //
v/ 4
: 1 :
B} :
Al
B
A\
\
-50 —40 —-30 —20 —10 O 2;0 3;0 40

16/25



Conclusions
In the IPSL-CM5A model :
» Positive low cloud feedback due to the decrease of the low
cloud fraction over weak subsidence regimes
» Robust across a hierarchy of model configurations (OAGCM,
AGCM, Aquaplanet, SCM)
» Adding a stochastic forcong on vertical velocity is necessary to
reproduce both present and future cloud fraction
» Low cloud decrease due to a enhanced advection of low-MSE
from the free troposphere to the PBL — related to the robust
Clausius-Clapeyron mechanism
Perspectives :
» Sensitivity of the SCM cloud fraction to variance profile
(stochastic, transient, others...)?
» Sensitivity of the SCM cloud response to potential changes of
variance profile under global warming?
> Less necessary on others (more subsident) points?

17/25



Thank You
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Is this mechanism robust ?
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Is this mechanism robust ?

> Playing with uncertain model 1 SWCRF vs ASWCRF
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Is this mechanism robust ?
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> Playing with uncertain model SWCRF vs ASWCRF
parameters ("tuning") mostly >
affecting low clouds to test
GCM cloud feedback.

» Always Positive cloud
feedback :
The larger the current cloud
cooling, the larger the cloud
sensitivity

» Both in 1D and 3D
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Is this mechanism robust ?

Playing with uncertain model
parameters ("tuning") mostly
affecting low clouds to test
GCM cloud feedback.

Always Positive cloud
feedback :

The larger the current cloud
cooling, the larger the cloud
sensitivity

» Both in 1D and 3D

» Range of different AACRF
for a same perturbation
— Why?
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Is this mechanism robust ?

Playing with uncertain model
parameters ("tuning") mostly
affecting low clouds to test
GCM cloud feedback.

Always Positive cloud
feedback :

The larger the current cloud
cooling, the larger the cloud
sensitivity

» Both in 1D and 3D
» Range of different AACRF

for a same perturbation
— Why?
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Physical Interpretation

» Always Positive low cloud feedback

» In all cases : Mechanism previously described is at work (enhanced
vertical advection of MSE)
— Explains the positive sign of the feedback

» Magnitude of the positive feedback related to more local feedback
mechanism
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Physical Interpretation

» Always Positive low cloud feedback

» In all cases : Mechanism previously described is at work (enhanced
vertical advection of MSE)
— Explains the positive sign of the feedback

» Magnitude of the positive feedback related to more local feedback
mechanism

e Local Feedback between cloud - Temperature +
radiative effects and RH

:% Clouds contribute to their own LW Radiative B Relative
maintenance (so-called (3 effect) Cooling Humidity

e May this explain the relationship
current/future climate 7 + +
Clouds

Brient and Bony, in prep.
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Pressure (hPa)

Radiative feedback
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» Test of this hypothesis by removing cloud radiative effets
(5=0)

=— Less Clouds in the PBL
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Pressure (hPa)

Radiative feedback
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» Test of this hypothesis by removing cloud radiative effets

(6=0)

=— Less Clouds in the PBL
= Weaker Cloud decrease in a future climate
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