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The problem: how do we represent this:
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Introduction

» Entrainment and detrainment in shallow clouds is typically
calculated as a residual in the tracer budget using LES.

» A more direct calculation using the relative velocity into/out

of a cloud is difficult on the discrete LES grid, because the
cloud surface moves at either 0 or Ax/At ~ 15-30 ms~!.

» Two new approaches have been developed to circumvent this
problem:

» Romps (2010): Time-average the entrainment fluxes over the
time needed for an entire grid cell flip from cloud to
environment

» Dawe and Austin (2010): Use spatial interpolation to improve
the all or nothing estimate of the cloud volume.
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Bulk entrainment — definitions

» Define an averaging operator:
1 Ly Ly,
¢(Z) = A/ ¢(X,y,Z)dXdy
0 0
where A= L,L,
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Bulk entrainment — definitions

» Define an averaging operator:
1 Ly Ly,
¢(Z) = A/ ¢(X,y,Z)dXdy
0 0
where A= L,L,

» Separate the domain into environment and cloud core:

de=de=7 | / oy, 2)dy
Ge=de= 4 / / oly.2)ddy

ac = Ac/A (fractional cloud cover)
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Bulk entrainment, cont.

» The entrainment and detrainment rates are:
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Bulk entrainment, cont.

» The entrainment and detrainment rates are:

E:—j{ pi - (u—u;)dl
A A-(u—u;)<0

D:]é pi - (u —u;)dl
A fi-(u—u;)>0

» The bulk plume/environment approximation:

1 .
E¢¢e = —Ajg pn - (u - u;)gi)dl
f-(u—u;)<0

1 -
Dy = A% pi - (u — uy)odl
i-(u—u;)>0

to proceed, assume E4 = E and Dy = D, but ...
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Clouds are surrounded by a cool moist shell
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Clouds are surrounded by a cool moist shell
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» So entrained/detrained air proprieties differ from ¢e, ¢c
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Calculating bulk Eg4 and D,

» Following Siebesma and Cuijpers, mass and tracer continuity
yield:

Opc Opaw'¢/ Do 09
E¢(¢c_¢e) = —Wi¢ D7 - paz —pa ot +a (81&),, _
orcing
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Calculating bulk E4; and D,

» Following Siebesma and Cuijpers, mass and tracer continuity

yield:
00 Opaw'dS 9o 99
E¢(¢c (be) = <9z Oz pa ot +a (at)forcing
» and

0de  Op(1—a)w'¢”
0z 0z

O0¢e O
o1 - 22 —p(l—a>((;f>f |
orcing

D¢(¢c - ¢e) = _Mc
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Calculating bulk E4; and D,

» Following Siebesma and Cuijpers, mass and tracer continuity

yield:
0pc Opaw'¢’"  d¢. 0%
E¢(¢c_¢e) = — Wi D7 - paz —pa ot +a (E)t)f _
orcing
» and

0de  Op(1—a)w'¢”
0z 0z

O0¢e O
o1 - 22 —p(l—a>(8‘fj>f |
orcing

D¢(¢c - ¢e) = _Mc

» where LES is used for the rhs terms. So how do Ey and Dy
compare to E and D?
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Romps time-averaged direct calculation for E4 and Dy

» Romps (JAS, 2010) defines the activity A, which is 1 in a
cloud core gridcell and 0 otherwise
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Romps time-averaged direct calculation for E4 and Dy

» Romps (JAS, 2010) defines the activity A, which is 1 in a
cloud core gridcell and 0 otherwise

» Mass continuity relates A to the local entrainment and
detrainment rates.

elx,v,2) ~ d(xy2) = £ (Ap) + 7 (pud)

» To get the direct E4(z) and Dy(z):

» Average e — d over the time required for a grid cell to change
state

» Label positive e — d as e, negative e — d as d

» Sum e and d over (x,y) to get E4(z) and and Dy(z).
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Romps time-averaged direct calculation for E4 and Dy

» Romps (JAS, 2010) defines the activity A, which is 1 in a
cloud core gridcell and 0 otherwise

» Mass continuity relates A to the local entrainment and
detrainment rates.

elx,v,2) ~ d(xy2) = £ (Ap) + 7 (pud)

» To get the direct E4(z) and Dy(z):

» Average e — d over the time required for a grid cell to change
state

» Label positive e — d as e, negative e — d as d

» Sum e and d over (x,y) to get E4(z) and and Dy(z).

» Romp’s result: E4 and D, are about a factor of 2 larger than
Eg and Dy, and depend on the tracer type
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Direct calculations using cloud surface interpolation

‘ V(i +1,k)

Start with the net entrainment
and derive:

E—D:/p(ui—u)~dC
c

dv
U(i+1,5k) E-D=p dr +
=
/ pu - dW
w

—
Wx (i+1,5,k) -

dv
» Dawe and Austin (MWR, 2010)  max (0, S /W pu - dW>
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Use tetrahedral interpolation to get the subgrid volume

» Where the core-environment boundary is determined by
interpolating g, gs, T, and w.
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Good agreement between Romps and tetrahedral

a) Entrainment
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The tetrahedral technique requires high resolution . ..
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Because the interpolation biases single gridcell cloud area
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Tetrahedral fluxes can be used for E;/D, snapshots

(10~* kg m=* s71)

(107" kgm~ s7!)

Direct entrainment:
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— 5 minute average
— 1 minute
—— 1.5 seconds

b) Tetrahedral Detrainment

c) Romps Entrainment

d) Romps Detrainment

N .1'
Wi

time (minutes)

tetrahedral

time (minutes)

15/26



Ey/ Dy spatial variability, 1 minute average

a) Tetrahedral Entrainment b) Tetrahedral Detrainment
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Linking direct and bulk entrainment rates
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converting E4 to E,

a) Mean g, Profiles
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Linking direct and bulk entrainment

16

]
18

Define shell and edge tracer values
Qshell and Gedge -
These values will differ
from g. and ge, the
mean cloud core and environment
vapor values
Can show that:

E¢ _ Ed . Ed Qshell — Qe

dc — Qge

Dd dc — Qedge

dc — ge

Alternatively, use conditional av-
erages to include Reynolds corre-
lations

qe = (E¢)a/Eq
dp = (D¢)d/Dy
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Corrected fluxes restore bulk tracer profile

b) Entrainment c) Detrainment

direct

—— shell/edge corrected
— qglgp corrected
- bulk tracer
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The ge / gp underestimate of E and D arises from differencing
two large quantities: gc(Eq — Dg) and (Eq)q — (Dq)4.
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Vertical momentum

c) Mean w Profiles
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Linking direct and bulk entrainment

When we modify the entrainment
calculation to account for nega-
tive and positive w, we find wg,
the Reynold’s correlated mean en-
trained vertical velocity > 0 and
nearly as large as wp.
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Why is is the cloud entraining positive w?

a) E(107* kg m~3 s71) b) Eq, (10% kg m™3 s7!) ¢) Bw (107! kg m~2 s72)
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Updrafts produce newly buoyant parcels well above cloudbase.
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Summary

» Two new techniques to directly calculate entrainment show
entrainment rates roughly two times higher than bulk values.
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Summary

Summary

Two new techniques to directly calculate entrainment show
entrainment rates roughly two times higher than bulk values.

Much of the difference between bulk and direct calculations is
due to the influence of the heterogeneous cloud shell /edge,
but Reynolds correlations also play a significant role,
particularly for momentum (see our JAS submission)
Tetrahedral interpolation can be applied to individual clouds,
and rapidly changing boundary layers, either over a cloud life
cycle or in a snapshot.

The interpolation technique is applicable in general to any
flow through a material surface in a three-dimensional model.
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Romps - tetrahedral correlation
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static energy
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ARM diurnal

a) (25 —%e)/(Gte—1e)

height (km)

height (km)

Summary

0 L 1 L
b) (4:c—ap )/ (@rc )
T T T
o
1 -
0 1 1 L
16 18 20 22 24

time (hours GMT)

1.00

0.92

0.84

0.76

0.68

0.60

0.25

0.20

0.15

0.10

0.05

0.00

26/26



	Introduction
	Bulk entrainment
	Direct entrainment: Romps
	Direct entrainment: tetrahedral
	Linking direct and bulk entrainment
	Summary

