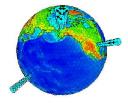


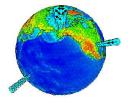
ASTEX case: SCM preliminary results

S. Dal Gesso, R. Neggers, P. Siebesma

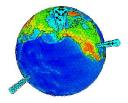
KNMI, Royal Netherlands Meteorological Institute

29-30 Sept. 2010 EUCLIPSE/GCSS meeting

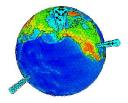

brief description of the experiment;

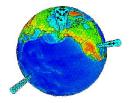

- brief description of the experiment;
- preliminary results for the ASTEX case: constant divergence rate and time-varying divergence rate case;

- brief description of the experiment;
- preliminary results for the ASTEX case: constant divergence rate and time-varying divergence rate case;
- presentation of the BL parametrization;

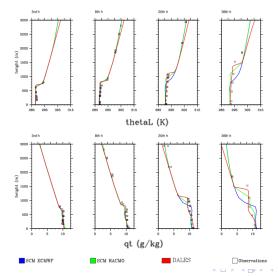

- brief description of the experiment;
- preliminary results for the ASTEX case: constant divergence rate and time-varying divergence rate case;
- presentation of the BL parametrization;
- sensitivity test;

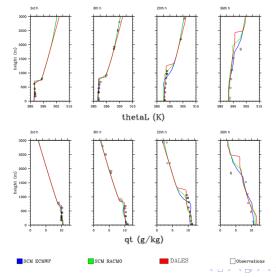
- brief description of the experiment;
- preliminary results for the ASTEX case: constant divergence rate and time-varying divergence rate case;
- presentation of the BL parametrization;
- sensitivity test;
- conclusions.

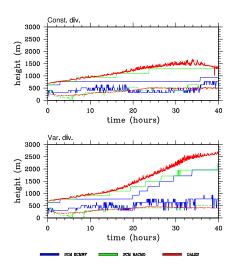


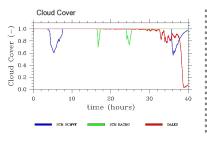

▶
$$\Delta t = 300 \text{ s};$$

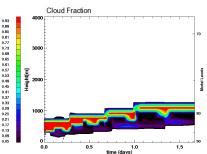
- ▶ $\Delta t = 300 \text{ s}$;
- standard vertical grid levels (L91);


- ▶ $\Delta t = 300 \text{ s}$;
- standard vertical grid levels (L91);
- two LS forcings;

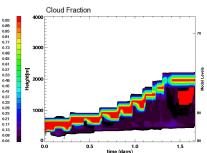

- ▶ $\Delta t = 300 \text{ s}$;
- standard vertical grid levels (L91);
- two LS forcings;
- comparison of the results with observations, LES and ECMWF 31r1 results.


Constant divergence rate case


Time-varying divergence rate case

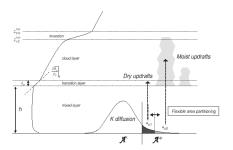


Cloud layer top and bottom


What about clouds? Constant divergence rate case

What about clouds? Time-varying divergence rate case

Dual Mass Flux scheme


EDMF:
$$\overline{w'\phi'} = -K\frac{\partial\bar{\phi}}{\partial z} + M(\phi_u - \bar{\phi})$$

Siebesma et al. 2000

Dual Mass Flux scheme

EDMF:
$$\overline{w'\phi'} = -K\frac{\partial\bar{\phi}}{\partial z} + M(\phi_u - \bar{\phi})$$

Siebesma et al. 2000

DualM:
$$\overline{w'\phi'} = -K \frac{\partial \bar{\phi}}{\partial z} + \sum_{i=1}^{2} M_i (\phi_{ui} - \bar{\phi})$$

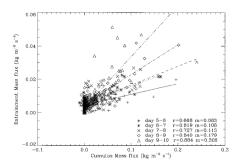
Neggers et al. 2009

Presentation of the closure

Presentation of the closure

At the top of the cloud layer:

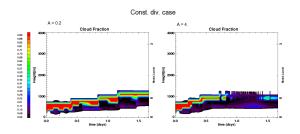
$$\frac{M_e}{M_c} = \frac{A}{Ri}$$
 where $Ri = \frac{g\Delta\theta_i}{\bar{\theta}} \frac{\delta z_c}{CAPE}$

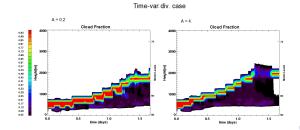

Wyant et al. 1996

Presentation of the closure

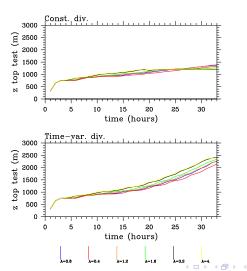
At the top of the cloud layer:

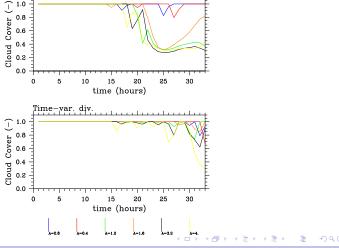
$$\frac{M_e}{M_c} = \frac{A}{Ri}$$
 where $Ri = \frac{g\Delta\theta_i}{\bar{\theta}} \frac{\delta z_c}{CAPE}$


Wyant et al. 1996

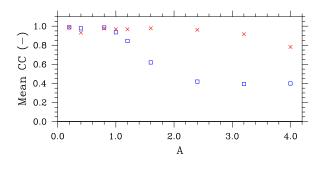


What about A?


The influence of the choice of A



The influence on BL height



Const. div.

The influence on cloud cover

The influence on cloud cover

× Time-var. div rate

□ Const. div. rate

▶ the results for the ASTEX case are in good agreement with observations and LES results;

- the results for the ASTEX case are in good agreement with observations and LES results;
- compared to ECMWF 31r1 the cloud layer top is heigher (and in better agreement with LES) but is still lower than in LES results;

- ▶ the results for the ASTEX case are in good agreement with observations and LES results;
- compared to ECMWF 31r1 the cloud layer top is heigher (and in better agreement with LES) but is still lower than in LES results;
- big impact of the closure parameter A at the top of the cloud layer

- the results for the ASTEX case are in good agreement with observations and LES results;
- compared to ECMWF 31r1 the cloud layer top is heigher (and in better agreement with LES) but is still lower than in LES results;
- big impact of the closure parameter A at the top of the cloud layer → more research needed.

Thank you for the attention!