

Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility

Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric and Oceanic Sciences McGill University

Stephan A.Klein and Yunyan Zhang Lawrence Livermore National Laboratory

Outline

- ≻Motivation
- \succ Introduction
- >CBL turbulent statistics
- >Shallow cumulus cloud statistics
- ≻Summary
- ≻Future Work

Motivation

Few long-term studies on Boundary Layer Cloud / Sub-Cloud Layer Interaction

No long-term dataset (in specific vertical velocity) studies for a better representation of Boundary Layer Clouds

Limited diversity of measurements for highly comprehensive studies and for platform intercomparisons.

Objectives

>To study the turbulent characteristics of the convective boundary layer (CBL.

>To document long-term statistics (macroscopic and dynamics) of shallow cumulus clouds

Central Facilities at SGP

Ka-band (MMCR: Millimeter Cloud Radar)

35 GHz, 8.6 mm, Vertically pointing Temporal resolution=10 s, vertical resolution= 45 m Cloud boundaries (Cloud top and bottom) Reflectivity, Doppler velocity and Spectral width W-band: Vertically Pointing, 94 GHz, 3.2 mm Temporal resolution=2 s, vertical resolution= 40 m Weather Station: Turbulent and Radiation Fluxes soil heat flux, Surface Variables (T, q, ws, wdir etc) Radar Wind Profiler: 915 MHz

Horizontal winds, Backscattered Radiation and Vertical Velocity

Vertical Velocities From Ground-Based Remote-Sensors

- Doppler millimeter wavelength cloud radars (MMCR) have been operating continuously at a number of sites worldwide (such as ARM) for years
- Millimeter wavelength → Sees cloud particles
- Doppler → measures velocity of the scattering target in the direction of the beam
- Vertically Pointing → the vertical velocity of the scattering target
- Volume → ~10 m x ~10 m x 45 m
- Frequency \rightarrow Every 10 sec

Courtesy of Steve Klein

Insect Echoes from a Cloud Radar (35 GHz)

Chandra et al., 2010

Correction for Doppler Velocity using Aircraft data

Correction equation: $W_{rc} = 1.96(W_{ru} + 0.42)$

Geerts et al., 2005

CBL Characteristics

- >Vertical velocity variance
- >Vertical velocity skewness
- >Updraft massflux

Vertical velocity variance

Chandra et al., 2010

Vertical velocity skewness

Vertical velocity variance and skewness for different cloud fractions

Profiles of mass flux ratio for clear-sky and cloudy conditions

Profiles of mass flux ratio for different cloud fractions

Highlights

>Coherent structures are responsible for more than 80 % of the total turbulent transport

> The turbulent characteristics observed using cloud radar are consistent with previous measurements

> These long term observations provide unique daytime evolution and indicated the role of increased cloudiness

This large SGP MMCR dataset makes observations suitable for evaluating Boundary layer parameterization

Clouds observed from a cloud radar (35 GHz)

Insect Clutter Removal Inside Shallow Cumulus Clouds

Insect Clutter Removal Inside Shallow Cumulus Clouds

Diurnal variation of Cloud boundaries and Liquid water path

Note: Composite Statistics obtained from 840 shallow cumulus Hours

Histogram of Cloud Chord Diameter (L) of Sh.Cumulus Clouds

Length scale (m)=timescale (10 sec) x Advection speed(from sounding/profiler)

Note: bin size of 200 m and total of 1400 Shallow cumulus clouds.

Histogram of cloud thickness (D) of Sh.Cumulus Clouds

Note: Bin size of 200 m

Histogram of Aspect Ratios (L/D) of Sh.Cumulus Clouds

Note: Bin size of 0.1.

Histogram of LWP and Cloud base variables

Incloud composite turbulent statistics

a) Updraft massflux, b) Updraft Fraction, c) Mean upward velocity and d) Variance of vertical velocity inside shallow cumulus clouds

Comparison of updraft mass flux

Future work

Study the possible factors (windshear, transition layer strength, tropospheric humidity, stability) which controlls the cloud-base massflux.

 Setting up a composite case study to simulate these observations in LES models.

Thank you !!

Questions & Suggestions ??